Structural effects on kinetics and a mechanistic investigation of the reaction between DMAD and N–H heterocyclic compound in the presence of triphenylarsine: spectrophotometry approach
نویسندگان
چکیده
Kinetics and a mechanistic investigation of the reaction between dimethyl acetylenedicarboxcylate (DMAD) and saccharin (N-H heterocyclic compound) has been spectrally studied in methanol environment in the presence of triphenylarsine (TPA) as a catalyst. Previously, in a similar reaction, triphenylphosphine (TTP) (instead of triphenylarsine) has been employed as a third reactant (not catalyst) for the generation of an ylide (final product) while, in the present work the titled reaction in the presence of TPA leaded to the especial N-vinyl heterocyclic compound with different kinetics and mechanism. The reaction followed second order kinetics. In the kinetic study, activation energy and parameters (Ea, ΔH‡, ΔS‡ and ΔG‡) were determined. Also, the structural effect of the N-H heterocyclic compound was investigated on the reaction rate. The result showed that reaction rate increases in the presence of isatin (N-H compound) that participates in the second step (step2), compared to saccharin (another N-H compound). This was a good demonstration for the second step (step2) of the reaction that could be considered as the rate- determining step (RDS). As a significant result, not only a change in the structure of the reactant (TPA instead of TPP) creates a different product, but also kinetics and the reaction mechanism have been changed.
منابع مشابه
Kinetic Aspects of Tetrahydrobenzo[b]pyran Formation in the Presence of Fructose as a Green Catalyst: a Mechanistic Investigation
The kinetics and mechanism of the reaction between benzaldehyde 1, malononitrile 2 and dimedone 3 in a mixture of ethanol and water as solvents in the presence of fructose as a biodegradable catalyst has been studied by the spectroscopic method (UV-Vis spectrophotometry method). The influence of various parameters (temperature, solvent and concentration) was studied on the reaction by means of ...
متن کاملTheoretical Investigation of the Reaction Mechanism for a Type of N-heterocyclic Compound Involving Mono-N-aryl-3-aminodihydropyrrol
The kinetics of reaction between 4-methylaniline (1), dimethyl acetylenedicarboxylate (2) and formaldehyde (4) has been theoretically investigated to gain further insight into the reaction mechanism. The results of theoretical calculations were achieved using the ab initio method at the HF/6-311g (d, p) level of theory in gas phase. The mechanism of this reaction had 5 steps. Theoretical kineti...
متن کاملKinetic, mechanistic and thermodynamic investigations on Iridium (III) catalyzed oxidation of D-Mannitol by N-chloro-p-toluenesulfonamide in perchloric acid medium
The present paper deals with the kinetics and mechanism of homogeneously Ir(III) chloride catalyzed oxidation of D-mannitol by chloramine-T [CAT] in perchloric acid medium in the temperature range of 30 to 45 0C. The reaction is carried out in the presence of mercuric acetate as a scavenger for chloride ion. The experimental results show first order kinetics with respect to the oxidant [CAT] an...
متن کاملComputational Model of Reaction Mechanism of Alkyl Peroxy Radicals with Organic Compounds in the Presence and Absence of Oxygen
On the basis of experimental data a kinetic model for the heterogeneous interaction between alkylperoxyradicals and organic compounds in Langmuir- Hinshelwood approach at room temperature has been offered.The effect of oxygen on the kinetics of process in the presence, [O2]o = 1 x 1011 – 1.6 x 1012 molecules.cm-2, and absence of oxygen has been analyzed. Over time the chain degenerate branching...
متن کاملKinetic Spectrophotometric Method for the 1,4-Diionic Organophosphorus Formation in the Presence of Meldrum's Acid: Stopped-Flow Approach.
The kinetics of the reaction between triphenylphosphine (TPP) and dimethyl acetylenedicarboxylate (DMAD) in the presence of Meldrum's acid (MA) for the generation of the 1,4-diionic organophosphorus compound has been investigated using the stopped-flow and UV-VIS spectrophotometry techniques. The first step of the reaction between TPP and DMAD for the generation of (I₁) in ethanol was followed ...
متن کامل